A series representation for Riemann's zeta function and some interesting identities that follow

نویسندگان

چکیده

Using Cauchy's Integral Theorem as a basis, what may be new series representation for Dirichlet's function $\eta(s)$, and hence Riemann's $\zeta(s)$, is obtained in terms of the Exponential $E_{s}(i\kappa)$ complex argument. From this infinite sums are evaluated, unusual integrals reduced to known functions interesting identities unearthed. The incomplete $\zeta^{\pm}(s)$ $\eta^{\pm}(s)$ defined shown intimately related some these integrals. An identity relating Euler, Bernouli Harmonic numbers developed. It demonstrated that simple integral with endpoints can utilized evaluate large number different integrals, by choosing varying paths between endpoints.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Identities for the Riemann Zeta-function

Several identities for the Riemann zeta-function ζ(s) are proved. For example, if s = σ + it and σ > 0, then ∞ −∞ (1 − 2 1−s)ζ(s) s 2 dt = π σ (1 − 2 1−2σ)ζ(2σ). Let as usual ζ(s) = ∞ n=1 n −s (ℜe s > 1) denote the Riemann zeta-function. The motivation for this note is the quest to evaluate explicitly integrals of |ζ(1 2 + it)| 2k , k ∈ N, weighted by suitable functions. In particular, the prob...

متن کامل

Some Identities for the Riemann Zeta-function Ii

Several identities for the Riemann zeta-function ζ(s) are proved. For example, if φ1(x) := {x} = x− [x], φn(x) := ∫ ∞ 0 {u}φn−1 ( x u ) du u (n ≥ 2), then ζn(s) (−s) = ∫ ∞ 0 φn(x)x −1−s dx (s = σ + it, 0 < σ < 1) and 1 2π ∫ ∞ −∞ |ζ(σ + it)| (σ + t) dt = ∫ ∞ 0 φ n (x)x dx (0 < σ < 1). Let as usual ζ(s) = ∑ ∞ n=1 n −s (Re s > 1) denote the Riemann zeta-function. This note is the continuation of t...

متن کامل

Partition Identities for the Multiple Zeta Function

We define a class of expressions for the multiple zeta function, and show how to determine whether an expression in the class vanishes identically. The class of such identities, which we call partition identities, is shown to coincide with the class of identities that can be derived as a consequence of the stuffle multiplication rule for multiple zeta values.

متن کامل

Identities for the Riemann Zeta Function

In this paper, we obtain several expansions for ζ(s) involving a sequence of polynomials in s, denoted by αk(s). These polynomials can be regarded as a generalization of Stirling numbers of the first kind and our identities extend some series expansions for the zeta function that are known for integer values of s. The expansions also give a different approach to the analytic continuation of the...

متن کامل

Identities for the Ramanujan Zeta Function

We prove formulas for special values of the Ramanujan tau zeta function. Our formulas show that L(∆, k) is a period in the sense of Kontsevich and Zagier when k ≥ 12. As an illustration, we reduce L(∆, k) to explicit integrals of hypergeometric and algebraic functions when k ∈ {12, 13, 14, 15}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Classical Analysis

سال: 2021

ISSN: ['1848-5979', '1848-5987']

DOI: https://doi.org/10.7153/jca-2021-17-09